

Clorosur Technical Seminar & WCC Safety Workshop

New Flemion Membranes for Zero Gap Configuration

AGC Chemicals ASAHI GLASS CO., LTD.

Influence of Zero Gap on the membrane

F-8080A : New Type of F-8080 series for Zero Gap

Next Generation Membrane

copyright© AGC Chemicals All Right Reserved

Configuration of Finite Gap and Zero Gap AGC

Less Catholyte Flow at Membrane Surface AGC

Less flow of catholyte at membrane surface removes less heat of membrane, which makes membrane higher temperature than catholyte outlet.

Higher Temperature in Zero Gap

F-8080, 6 kA/m², 32 wt% NaOH, 200 g/I NaCI

at least 5 °C higher than in finite gap.

Magnified View of Configuration

Less H₂ Gas Flow in Zero Gap Structure

Less flow makes more H_2 gas bubbles touch the membrane, caused by zero gap structure.

AGC

Higher H₂ in Cl₂ at Lower CD

AGC Chemica

H₂/Cl₂ on anode side at low CD in commercial size electrolyzer

Zero gap shows higher H_2 in CI_2 than finite gap in same electrolyzer, which indicates more H_2 gas touches to cathode side surface of the membrane.

Influence of Zero Gap on the membrane

F-8080A; New Type of F-8080 series for Zero Gap

Next Generation Membrane

8 copyright© AGC Chemicals All Right Reserved

F-8080 : CE Decrease in Zero Gap

F-8080, 6 kA/m², 32 wt% NaOH, 200 g/l NaCl

F-8080 in zero gap shows 0.5-1% lower CE than in finite gap at high temperature.

F-8080A : Higher CE at High Temperature AGC

F-8080A shows more than 96 % CE even at 100 °C.

F-8080A : Higher CE in commercial size nx-BiTAC

Zero gap (Commercial size nx-BiTAC)

6kA/m², 32wt% NaOH, 200g/I NaCl

F-8080A : Higher CE in Hydrated Condition AGC

F-8080A shows higher CE in weak brine.

1. Higher stability for zero gap

• Especially, higher CE at high temperature

2. Higher CE against hydrated state

higher CE in weak brine

3. Same voltage and durability as F-8080

- Low voltage and high durability
- Fine adjustment of F-8080 which has proven reliability

Influence of Zero Gap on the membrane

F-8080A : New Type of F-8080 series for Zero Gap

Next Generation Membrane

- Lowest Voltage
- Higher CE in Wider Range
- Higher Durability against I/Ba

Lowest Voltage

AGC

Stability of Lowest Voltage

16

Prototypes of next generation membrane keep stable low voltage in AGC commercial electrolyzers for over one year.

Key Technology of Next Membrane

AGC

Key Technology of Next Membrane

$(+) \qquad (-)$		
	Advantages	Key Technologies
	Voltage Reduction	Fiber Arrangement
	Higher CE in Wider Range	Fine Ion Channel
	Higher Durability against I/Ba	Uniform Ion Channel

Optimized Fiber Arrangement

Making use of optimized fiber arrangement, this makes next generation membrane shows lowest voltage.

Higher CE in Wider Temperature Range

6 kA/m², 32 wt% NaOH, 200 g/l NaCl

Next generation membrane shows higher CE not only at high temperature but also at low temperature.

Chemistry for a Blue Planet

AGC

Higher CE in Weak Brine

nistry for a Blue Planet

Next generation membrane shows higher CE in weak brine. It is suitable for electrolyzers which have less inner circulation of brine.

Higher CE in Wider Range of Caustic Strength

6 kA/m², 90 °C, 200 g/l NaCl

Next generation shows higher CE in weak and strong caustic.

AGC

Durability against I/Ba

Next generation membrane has higher durability against I/Ba.

Note : Same durability against Ca as F-8080

Furthermore!

Frequent Load Tensile Test

AGC

Total number of frequent load tensile test until membrane breaking (Sum of the value to various direction. Load : 60 % of tensile strength)

Next generation membrane is more robust than F-8080 and F-8080A.

1. Lowest voltage

- -50 mV lower voltage than F-8080 and F-8080A
- Optimized fiber arrangement

2. Higher CE in both hydrated and dehydrated state

- Suitable for zero gap and finite gap
- Suitable for electorolyzer which has less inner circulation of brine
- 3. Higher durability against I/Ba
- 4. Better robustness

Large quantity of Fx-634 will be delivered from 2Q 2017.

Influence of Zero Gap on the membrane

Higher temperature due to less heat removal

● F-8080A : New Type of F-8080 series for Zero Gap

- Advanced F-8080 for higher temperature and weak brine, for hydrated state.
- Fine adjustment of F-8080 which has proven reliability.

Next Generation Membrane : Fx-634

- •50 mV lower voltage than F-8080/F-8080A
- Higher CE in both more hydrated and more dehydrated state
- Durability against I/Ba and better robustness

Information of CTCN (Climate Technology Centre and Network)

• Expected energy consumption reduction by converting into membrane is 20-30%.

Electrolysis Process	Mercury	Diaphragm	Membrane
Energy efficiency	as 1.0	0.8-0.9	0.7-0.8

Potential financial scheme by UNFCCC

COP 16 in 2010 **Climate Technology Centre &** Network (CTCN) is the operational established the covernance COP arm of the Technology Mechanism. Technology Mechanism. Climate Technology Centre & Network Advisory Board Network Technology Mechanism Technology Climate Technology Executive NDEs Sill Dort for implementing Committee Centre Network Strategic guidanc Network

Courtesy: Rajiv Garg, "CTCN: Support implementation of NAMAs"

AGC

•

The CTCN's mission is "Stimulating technology cooperation and enhance the <u>development and transfer of</u> <u>technologies</u> to developing country Parties at their request"

Services:

- 1. Technical assistance to developing countries
- 2. Knowledge sharing and training
- 3. Fostering collaboration on climate technologies (including linking climate technology projects with financing opportunity)

Overview of CTCN Services

CTCN Technical Assistance

Fast and short (3 pages) application process for countries

Provided:

- To developing countries upon their request
- Free of charge (value up to 250,000 USD)
- State of the art and locally relevant expertise
- To academic, public, NGO, or private entities ...

Thank you for your attention

Chemistry for a Blue Planet AGC Chemicals

私たちは化学の力を通じて、安全、安心、快適で、環境に優しい世の中を創造します。

Create a safe, secure, comfortable and environmentally friendly world with chemical technology. 通过我们的化学技术,来创造一个安全、安心、舒适且环保的世界!