

Nafion™

A Reliable Partner for over 50 years

Agenda

- Overview of Nafion[™]
- Research and Technology Development
- Product and Innovation Pipeline
- New Membranes
 - Commercial status & Performance
 - Testing and validation
- Technical Service Support
- Questions

Overview of Nafion™

Inventor of Nafion ™ Ion Exchange Polymers

- Nafion™ brand has more than 50 years history of proven, high quality, innovative, reliable and sustainable products used across multiple applications.
- Nafion™ has excellent chemical resistance and physical properties with the added benefit of strong ionic properties.
- Nafion™ is one of the most recognized names in Chlor-Alkali, Fuel Cells, Energy Flow Battery Storage, Industrial Catalyst, Electrolysis, and Humidifier/Drier applications.

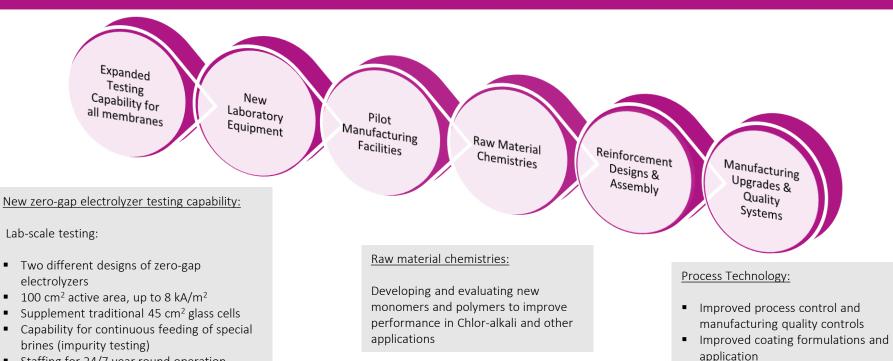
Reliable Supplier

- Nafion™ provides the most high-performing, safe, and durable products in the industry. This recognized leadership offers greater efficiency to the customer and a trusted and respected partner.
- Nafion™ is part of a large integrated supply chain within Chemours™ with strong access to high quality upstream raw materials.

Innovation & Commitment

Chemours™ is committed to a continuation of innovation of Nafion™ product offering through product development and performance, strong technical service, and extending use into new emerging applications.

Research & Development


Research & Technology Development

- Chemours™ has invested significant R&D efforts into expanding testing capability for product development and improving quality control of commercial manufacturing enabling improved high performing and high quality membranes.
- The Nafion™ Research & Development team are actively working on a broad scope of chemistry fundamentals, design concepts, and process technology enhancements for future membranes.
- New membrane NE2050 has been recently launched through the efforts of the Research and Technology teams and is performing excellent in commercial plants.

Research & Technology

Comprehensive Approach to New Membrane Innovation

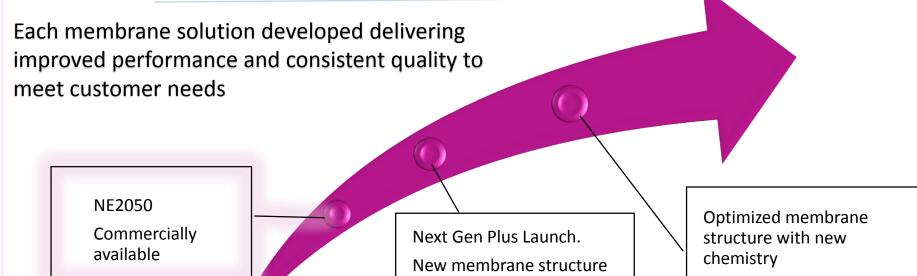
Pilot manufacturing facilities:

- Small-scale production of new monomers and polymers (for lab or plant trials)
- Small-scale membrane fabrication from polymers and fabric through finished membrane

Reinforcement & Assembly designs:

Developing upgrades to improve mechanical and electrical performance of Chlor-alkali membranes

Staffing for 24/7 year round operation.
 Standard conditions at 90C, 6 kA/m²


Development Pipeline

NE2050 - 50-70 mv improvement over 2030 with equivalent impurity resistance and mechanical strength

Next Gen Plus—90+ mV improvement over 2030, improved CE, reduced pinholes and defects

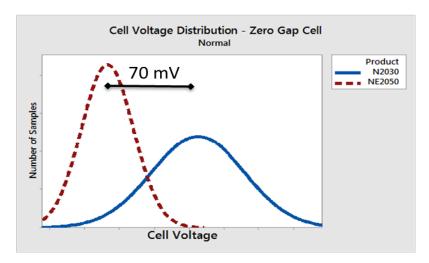
New Technology – Utilizing new chemistry in overall design

Prototypes tested

Next Generation Membrane NE2050

Plant	Туре	Vs N2030	vs Comp. Mem. 1	Vs Comp Mem. 2
1	Zero Gap 50 DOL	-60 mV		-60 mV
2	Zero Gap 60 DOL	-80 mV	-20 mV	
3	Zero Gap 70 DOL		-30 mV	
4	Near Zero Gap 6 DOL		-20 mV	

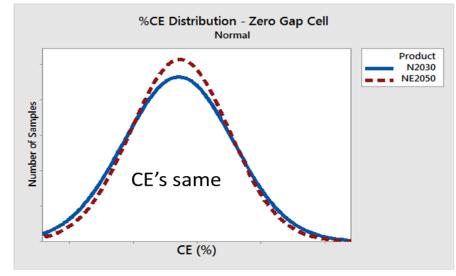
- 20,000 m² shipped to date
- Consistent CE performance to NE2030
- Good mechanical strength
- Fewer pinholes/leaks have been reported at start-up



NE2050 High Performing Membrane

- Data presented is from > 100 different lots tested from commercial production.
 - Voltage, Current Efficiency, Durability testing (Ca Spike, Brine) Impurity, High Caustic, High Current Density, Mechanical Strength)
- Brine test results are internal lab tests at extreme conditions and based on voice of customer
- NE2050 utilizes the mechanical strength and stability of N2030 reinforcement with improved voltage for zero-gap electrolyzers

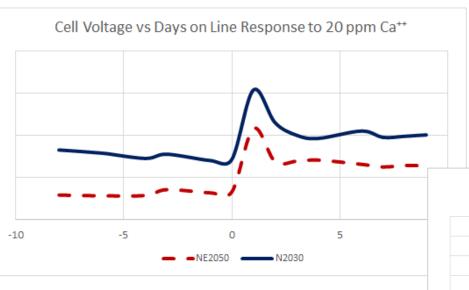
NE2050 Comparison to N2030 Cell Voltage & CE


Voltage

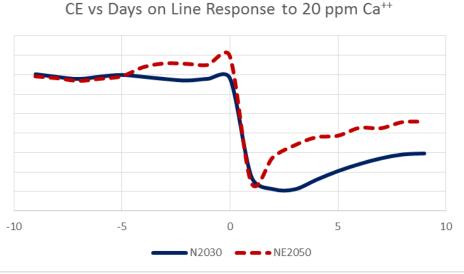
<u>Test Conditions</u> Zero-gap cells, 100 cm² 90C; 6 kA/m²; 32% NaOH

Note: Means are relative but distributions are impacted by small cell testing. Cell testing data is from over 100 commercial lots of production.

NE2050 production data show 50-70 mV improvement over N2030 with comparable Current Efficiency


Current Efficiency

Accelerated Calcium Spike Test

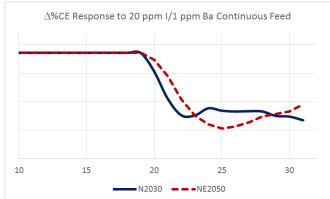


NE2050 membrane performs equivalent to N2030 to large Calcium spike, with lower voltage.

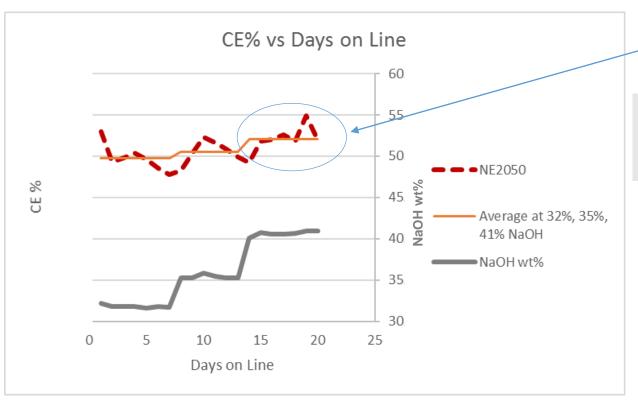
20ppm Ca spike

Test Conditions

Zero-gap cells, 45 cm2 glass cells. 90 C; 4kA/m2



Accelerated Durability Cell Testing: Ba/I Impurity Feed Test


Test Conditions
Zero-gap cells, 100 cm²
90C; 6 kA/m²;20 ppm I, 1
ppm Ba continuous feed
from DOL 18

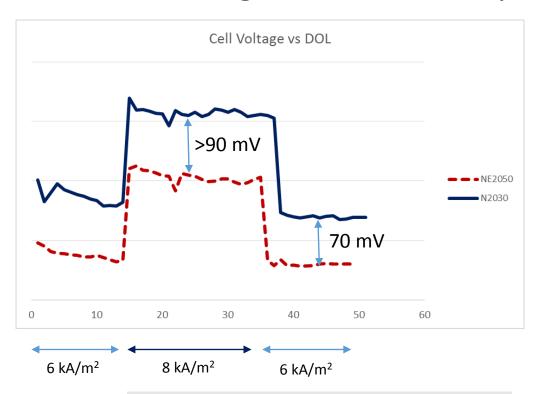
NE2050 product performs equivalent to N2030 with <u>lower voltage</u>

High Caustic CE Response

Note: Membrane was inspected after high current density operation via microscopy without any notable or visible damage; however, Chemours™ recommendations in our User's Guide remain the same.

Nafion™ structures resist CE at >40% NaOH.

NE2050 membrane performs equivalent to N2030 in high caustic excursions


41% caustic produced with no water addition. Maximum caustic at cathode surface

<u>Test Conditions</u> Zero-gap cells, 100 cm²

90C; 6 kA/m²

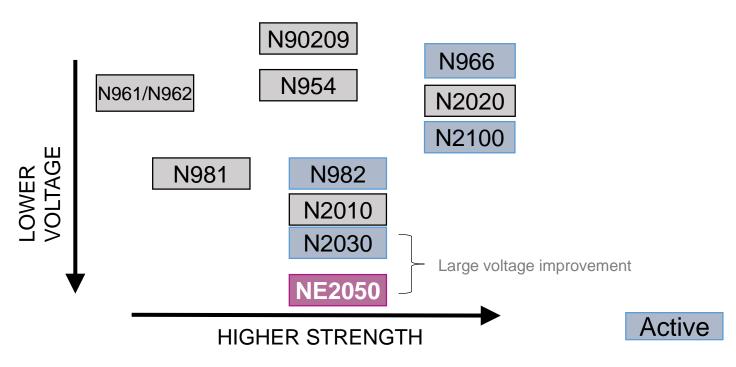
High Current Density Test

NE2050 membrane performs equivalent to N2030, with <u>lower voltage</u> and stable CE

SEM analysis after test shows no difference in membrane types. Membrane structure and CE stable

Test Conditions
Zero-gap cells, 100 cm²
90C; 6 kA/m²

Mechanical Properties


	N2030	NE2050
Force Constant at Yield (kgf/cm)	3.8	4.0
Tensile Strength (kgf/cm)	36	36
Strain at yield (%)	12	11
Load at Yield (kgf)	19	19

^{*}TD Data; MD Data is similar

NE2050 has equivalent mechanical strength to N2030 (same reinforcement)

Nafion™ Product Performance Map Legacy

Beyond NE2050, the R&D pipeline continues on future membrane developments to further enhance voltage and CE performance, utilizing the strong technology of Chemours™ chemistries and operating capabilities

Summary

- Nafion™ has a new high performing membrane, NE2050 which is performing very well in the market and commercially available in all size and quantities for any replacement or project need
- New membrane has significantly improved voltage, comparable CE and equivalent mechanical strength relative to N2030
- Beyond NE2050, the R&D pipeline continues with future membrane developments to further enhance voltage and CE performance, utilizing the strong technology of Chemours[™] chemistries and operating capabilities.
 - The new membrane prototypes being developed and successfully made at the factory reduce voltage 30-40mV further and increase CE by 0.5%

Global Technical Service

Global Technical Service

Value of Nafion™ strong local technical & sales team

We provide:

- Analysis of customer membranes, brine and salt
- Consultation on membrane selection based on our years of experience in a wide variety of applications with analytical data
- Consultation on plant operating conditions using Nafion™ membranes
- Deliver training on membrane handling and installation

Renewal of Laboratory Facilities:

- Upgraded SEM/XRF
- Surface Profilometry, Surface Tension
- Improved Membrane Resistance Measurement capability
- Improved and more detailed Membrane Mechanical Physical Property Measurement
- New zero-gap lab cell testing capability with improved voltage measurement and current density to 8 kA/m² (with future capable to 10 kA/m²)

Global Technical Service Team

America

- George W. Brown George-W-GW.Brown@chemours.com
- Doug Ewart Doug.Ewart@chemours.com
- · Rita Bolton
- Bob Theobald
- · Chase Perry

Europe, Middle East and Africa

- · Replacement to be named soon
- China, Taiwan and ASEAN
 - Martin Yu Martin.Yu@chemours.com
- Japan and Korea
 - Ryo Iwata Ryo.Iwata@chemours.com
- India
 - V.G. Rao V.G.Rao@chemours.com

George Brown

Chlor-Alkali Global Technical Service Leader

Doug Ewart

Sr. Electrical Engineer
Technical Service Consultant

Rita Bolton

Technical Service Technician

Bob Theobald

Technical Service Consultant North America and Latin America

Chase Perry

Technical Service Specialist

Martin Yu

Technical Service Lead China, Taiwan and ASEAN

Yang Yu

Technical Service Consultant China, Taiwan and ASEAN

Ryo Iwata

Technical Service Consultant Japan and Korea

V.G. Rao

Sales & Technical Service

Question & Answer

Questions?

Thank you