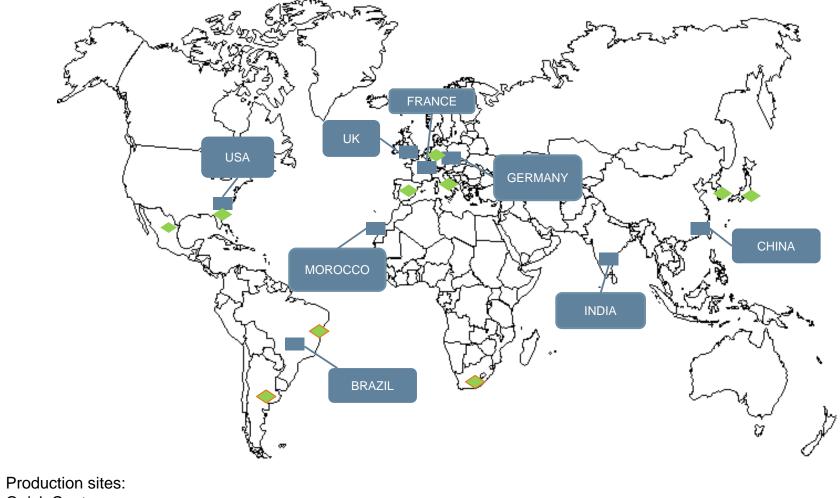
HCL SYNTHESIS UNITS WITH ENHANCED SAFETY FEATURES

cloroSur

CLOROSUR NOVEMBER 2016

MERSEN: WHO ARE WE?

AN INDUSTRIAL BASED COMPANY SUPPLYING EQUIPMENT & KNOW HOW TO OUR CLIENTS


TWO MAIN SUBDIVISIONS- PRODUCT FOCUS AREAS

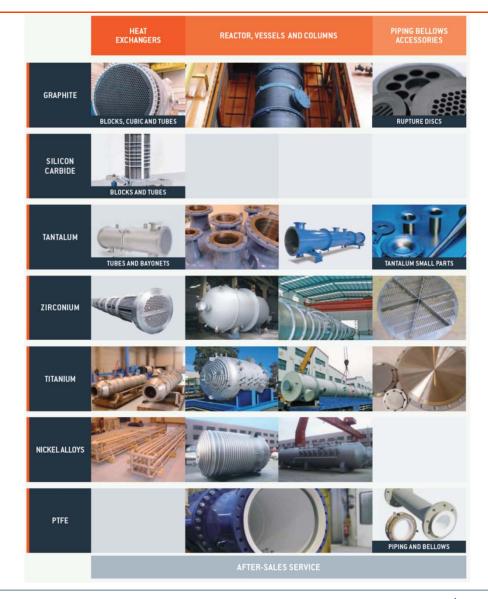
A dvanced M aterials	ELECTRICAL POWER						
ANTICORROSION EQUIPMENT	ELECTRICAL PROTECTION &						
GRAPHITE SPECIALTIES	SOLUTIONS FOR POWER MANAGEMENT						
POWER TRANSFER TECHNOLOGIES							

2015 Group Sales of ~\$850 million ~7000 employees world wide

MERSEN: WHERE WE ARE...

MERSEN ANTICORROSION AND PROCESS EQUIPMENT IDEALLY SUITED FOR THE CHLOR-ALKALI INDUSTRY

- **DESIGN AND MANUFACTURE OF PROCESS EQUIPMENT :**
 - Heat exchangers, pressure vessels, mixers, columns
 - Engineered skid packaged systems
 - Piping, fittings
- IN A WIDE RANGE OF MATERIALS
 - Graphite, SiC
 - Tantalum, zirconium
 - Titanium
 - Nickel alloys
 - PTFE, PFA
 - Carbon steel, stainless steel


- FOR CORROSIVE APPLICATIONS IN PROCESS INDUSTRIES
 - Chemicals, Fine chemicals, pharmaceuticals
 - Hydrometallurgy & pickling
 - Agrochemical & Water treatment

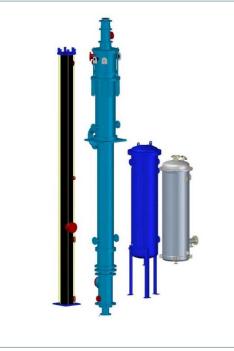
MERSEN ANTICORROSION AND PROCESS EQUIPMENT PRODUCTS IDEALLY SUITED FOR THE CHLOR-ALKALI INDUSTRY

- Graphite equipment for transformation of HCI acid and gas (heat exchangers, synthesis units)
- •Titanium wet Cl2 coolers & demisters
- Titanium piping
- Titanium brine heaters
- Titanium reactors & tanks for hypochlorite (bleach)
- Nickel 200 coolers & heaters for NaOH
- PTFE piping for wet Cl2 and HCl

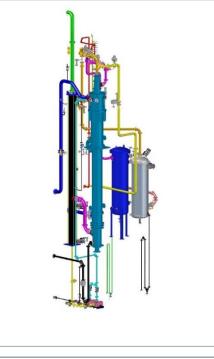
MERSEN ANTICORROSION AND PROCESS EQUIPMENT SYTEMS OFFERED FOR THE CHLOR-ALKALI INDUSTRY

- HCl synthesis units
- brine treatment
- H2SO4 dilution & concentration
- Cl2 recovery (stripping) from brine solutions
- Plants for PAC (PolyAluminum Chloride)
- Plants for FeCl3

Æ.	PROCESS FUNCTION	H ₂ so ₄	нсі	CI ₂	HBr	Br ₂	P205	Brine	Flue Gas	FeCl ₃
	Absorption		✓		~				✓	
	Burner		√	\checkmark	~	~				
	Concentration	~	√		~		~			~
	Dilution	~	✓		~		~			
	Gas Drying		√	√	~					
	Distillation/ Desorption/Stripping		√	√	~					
	Gas cleaning / Vent treatment		√	√	~	~			~	
	Inorganic removal	~	√				~	~		~
	Organic removal	~	√		~		~	✓		~
	Production		√		~	~				~
	Temp. Control	✓	√		~		~		√	
	Vaporizer		√	√	√	~				
	Vacuum system	~	√	√	~		~	~		✓



Enhanced safety for HCL synthesis units MERSEN TECHNOLOGY


MERSEN IS A WORLD LEADER FOR THE SUPPLY OF HCL SYNTHESIS UNITS WITH OVER 600 UNITS INSTALLED PROVIDING A TOTAL PACKAGE SOLUTION

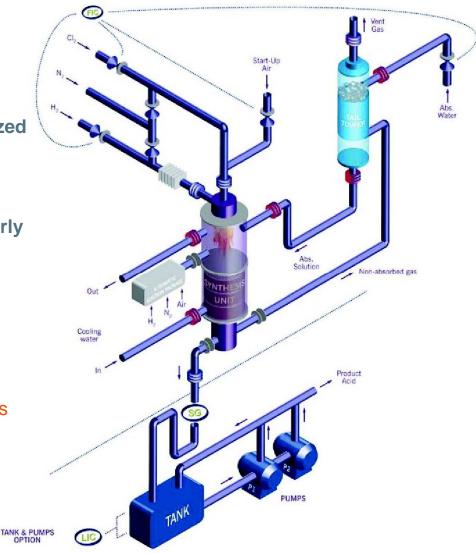
ENGINEERING

- Conceptual design
- P&ID
- Basic/detail engineering
- Main equipment supply

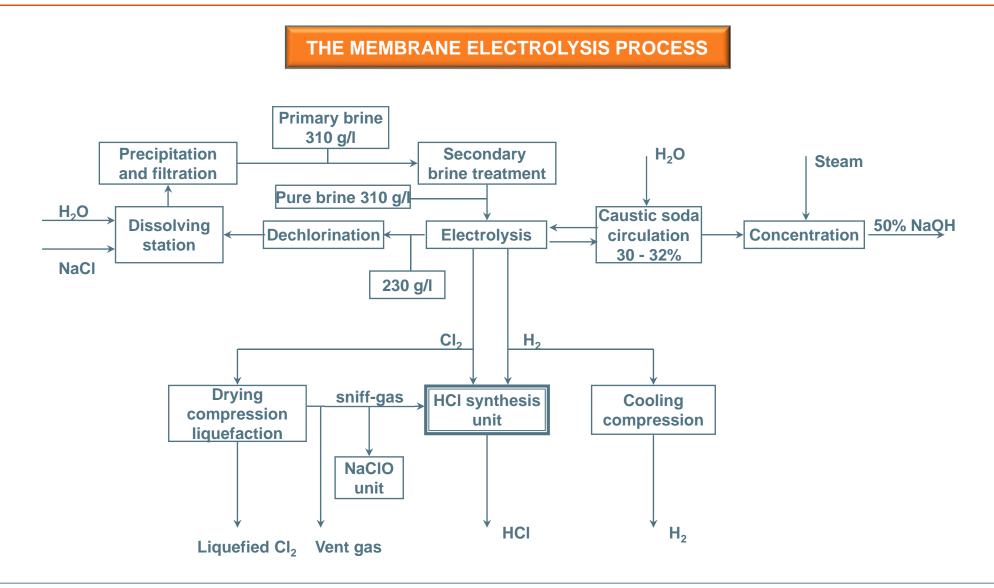
- PROCUREMENT
 - Instrumentation
 - Piping and valves
 - Automated control cabinet
 - Main equipment supply

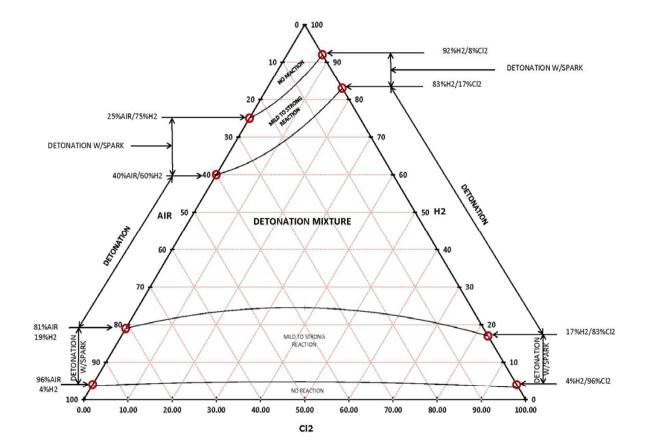
CONSTRUCTION

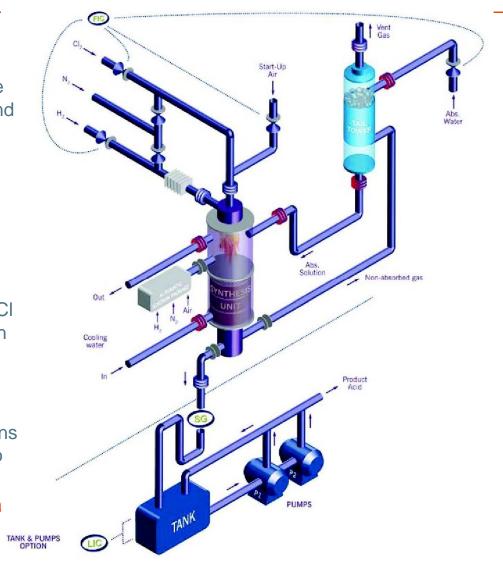
- Main equipment supply
- Modular assembly includes: the installation of steel structure, equipment, piping & valves, instrumentation, cabling, junctions boxes



Enhanced safety for HCL synthesis units MERSEN TECHNOLOGY


- Hydrogen chloride is formed by burning chlorine with a slight excess of hydrogen.
- Cl2 (g) + H2 (g) => 2 HCl (g) + 600 kcal/kg
- Hydrogen chloride gas is absorbed in demineralized water to form pure hydrochloric acid.
- This is a combustion process involving a very reactive mixture of gases which can, if not properly managed, cause an explosion and cause major property damage and personnel injury or fatality
- MERSEN safety enhancements
 - Material selection
 - Safe equipment design
 - Attention to control philosophy and safe practices (HAZOP/LOPA, etc.)
 - Process control & selection of control elements
 - BMS- Burner Management System

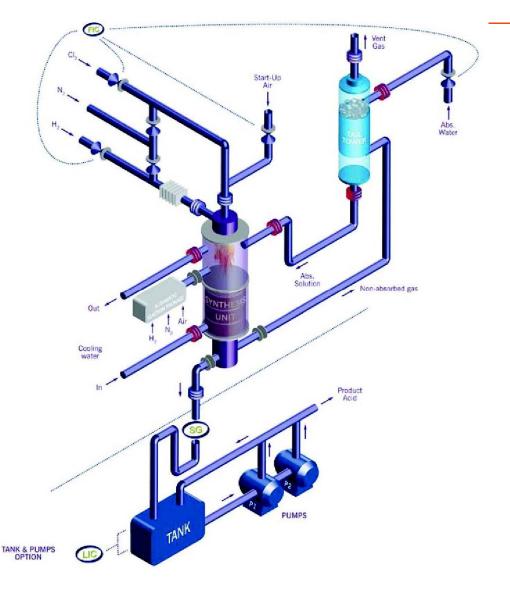

HCL synthesis units – 95% of the world's units are connected to a Chlor-Alkali plant


Enhanced safety for HCL synthesis units -explosion triangle

- Biggest danger with any synthesis unit is an explosion of unburned gases
- The explosion triangle for H2 , Cl2 and air is <u>not</u> very forgiving
- The energy requirement to set off an explosion even in the mild to strong reaction area of the triangle is very small – less energy than that from a small fluorescent light bulb
- Sunlight and even the smallest static discharge can trigger a detonation

-crossing the stoichiometric boundary -1/2

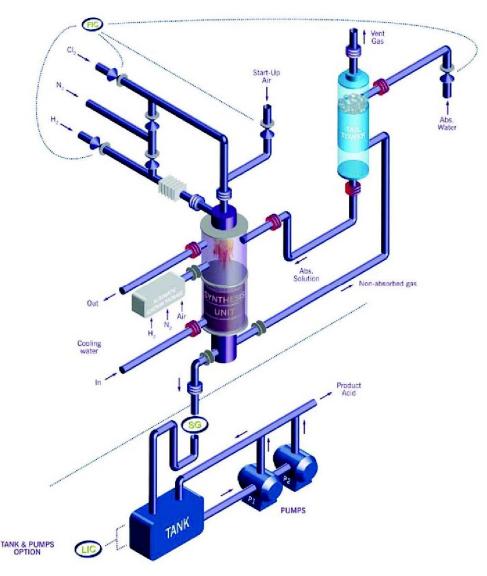
- both the fuel (H2) and an oxidant (Cl2 or air) must be present for combustion (or an explosion) to occur and an ignition source must be present
- Normal operation: all of the oxidant (Cl2) is carefully combusted in the burner chamber & furnace by operating with typically 10% excess fuel (H2); stoichiometry is 1.1H2/1.0Cl2 (ratio of 1.1)
 - Near the burner, all of the Cl2 is converted to HCl and what remains is typically ~95% HCl gas with ~5% excess H2 and other inerts from the feed gas streams
 - After the absorption of HCl in water, what remains in the gas stream sent to the tail tower is 80% to 90%V H2 with inerts
 - this is a danger zone if upsets occur or if a unit is controlled poorly and oxidant (air or additional Cl2) is allowed to enter



Enhanced safety for HCL synthesis units--crossing the stoichiometric boundary -2/2

- Dangerous conditions of unburned explosive gases can occur in a number of ways including:
- Improper purging with N2 at start up and shut down
- A faulty start up sequence (with manual light up or auto-igniter)
- Operating under vacuum (air can leak in)
- Poor control during normal operation; crossing of the stoichiometric boundary
 - When the stoichiometric boundary of 1.0H2/1.0Cl2 is crossed to say 0.9H2/1.0Cl2 what remains near the burner is now ~95% HCl gas with ~5% excess Cl2 and other inerts from the feed gas streams
 - After the absorption of HCl in water, what remains in the gas stream sent to the tail tower is 70% to 90%V Cl2 with inerts;
 - If the crossing occurs suddenly, a slug of Cl2 can now meet with a slug of H2 in the system and an explosion can occur and an emission of Cl2 will also occur

• We will now discuss what MERSEN does to minimize these conditions

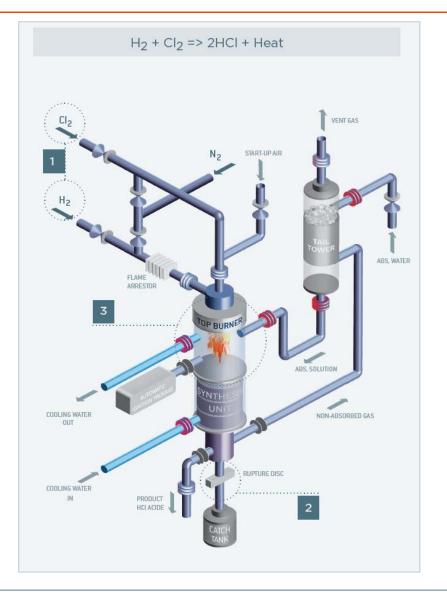


Enhanced safety for HCL synthesis units MERSEN – Material Selection

- MERSEN Graphite material (named Graphilor 3®) is conductive (non-sparking), highly corrosion resistant; it is composed of ultra fine grain isostatic graphite (<20µm) for excellent mechanical resistance.
- Graphilor 3® XC can withstand up to 430 deg C; it is used in high temperature areas --- this provides additional safety if there is an upset
- PTFE lined pipe (named ARMYLOR®) with graphite powder is conductive material for anti-static protection
- FRP equipment (like scrubbers or tanks) where H2 gas can be present use interior carbon veils (grounded to the exterior) for anti-static protection

Enhanced safety for HCL synthesis units MERSEN design – top fired design

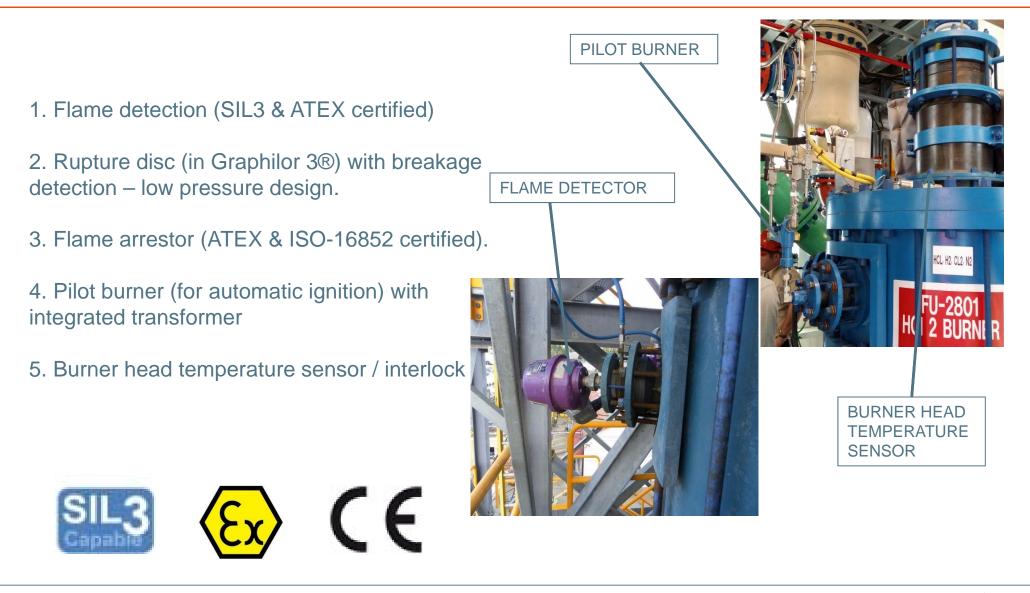
1. Burner + Reactor + Absorber encompassed in one piece of equipment


 Wetted wall furnace design with optimized flame velocity & immediate liquid mass transfer (absoption) of acid permits reduced volume of gas in the unit

→ translates to a reduced explosive volume & increased safety

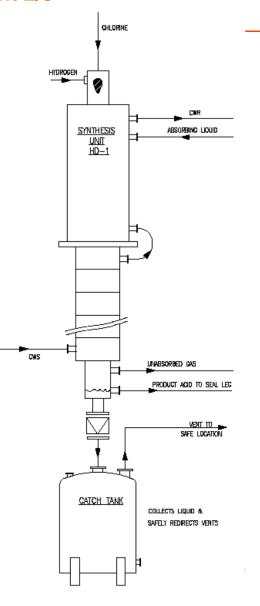
3. Hydrogen gas (volatile gas) & chlorine is far above the ground (above the pipe rack)
→ ATEX area far above the ground.

4. Chlorine gas is **far above the ground** (> 10 meters elevation).



Enhanced safety for HCL synthesis units MERSEN – safe design of ancillary devices and equipment 1/3

SAFETY



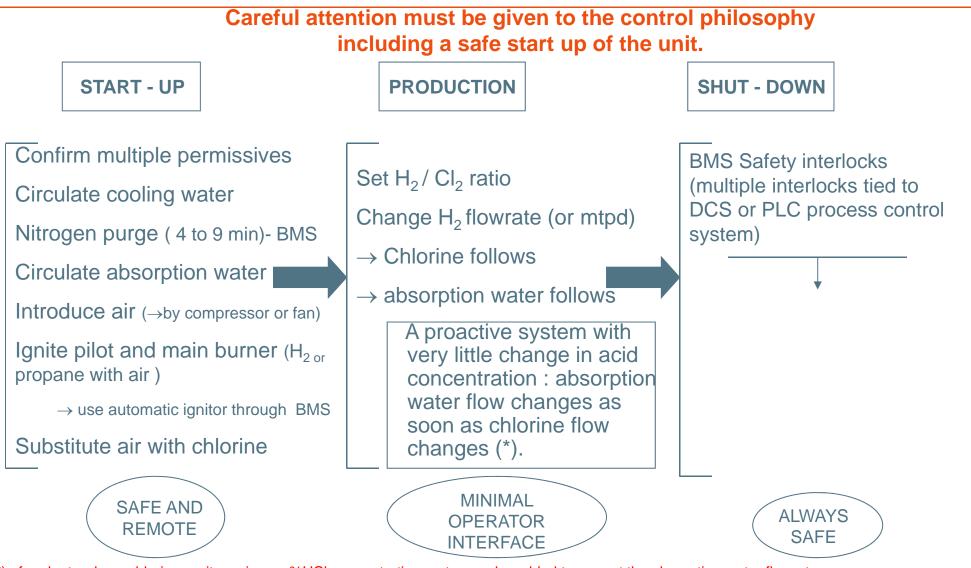
Enhanced safety for HCL synthesis units MERSEN – safe design of ancillary devices and equipment 2/3

- Top fired means that a Catch Tank can be installed at the bottom to collect effluent when rupture disk breaks
 - Safely handles gaseous and liquid effluent
 - MERSEN's discharge of gas is typically less than 20% that of competitors that use an upfired design

Enhanced safety for HCL synthesis units MERSEN – safe design of ancillary devices and equipment 3/3

- Double block & bleed on Hydrogen line.
- Positive pressure start up with an air combustion blower to avoid vacuum
- Flame extinguishment package on the stack
- Possibility to install caustic scrubber package for ultra-low emissions.
- Instrumentation package for safe start-up & operation (ATEX & SIL2 certified where

TA Luft



Enhanced safety for HCL synthesis units MERSEN – control philosophy and HAZOP/ LOPA reviews

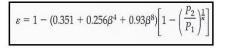
(*) : for plants where chlorine purity varies , a %HCl concentration meter can be added to correct the absorption water flowrate.

Enhanced safety for HCL synthesis units MERSEN – control philosophy and HAZOP/ LOPA reviews

- HAZOP or LOPA review meetings are a must for any new installation
- A HAZOP is only as good as the people participating in it
- MERSEN has over 600 units installed and has some of the most experienced engineers on the planet when it comes to the design, installation and operation of HCI synthesis units
- If you are installing MERSEN equipment or a MERSEN system, make sure you get MERSEN, with all its experience, participating in your HAZOP

- **MERSEN** process control & selection of control elements
- Careful selection of the gas flow meters and control valves (for air, H2 & Cl2) are paramount for a good control system
 - Special consideration is required for the typical low pressure & corrosive feed conditions that prevail for most new systems that use low pressure gas direct from the electrolysis cells
 - In general, the higher the pressure drop across a meter or control valve the better the turn down and controllability
 - MERSEN carefully selects low dP meters and matches them to a suitable control valve that can handle all of the process conditions including start up transitions
 - Often pressure recovery meters (such as dP venturis) are used to better enhance controllability, especially for wet low pressure Cl2
 - Control algorithms for the meters need to match accordingly

CL2 venturi dP flow meter

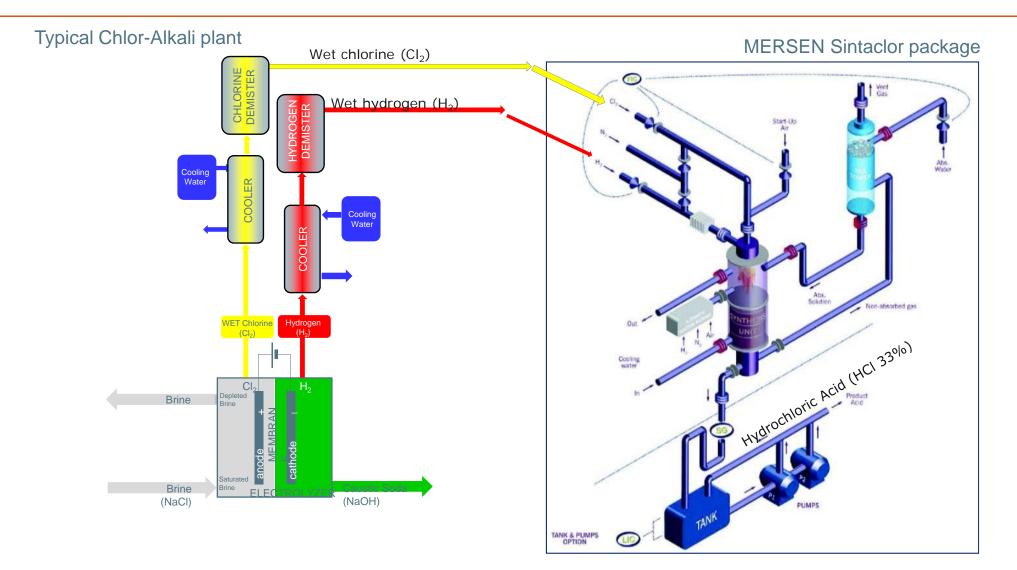

A. CHLORINE FLOW CALCULATION BASED ON DP FLOW (FIT-2801-42A) :

The flow for chlorine is calculated using the following formula in a reduced format:

Qci2 FIT-2801-42A =1154.598*Y*FTF TIT-2801-41*SQRT (PF PIT-2801-40)*SQRT (Hw FIT-2801-42A) * (Kmw AI-2801-48) SCfh

Q_{CL2 FIT-2801-42A} = Corrected flow rate in scfh at 60°F and 1 atmosphere

Y (ε) = Expansibility factor (dimensionless) = 1-0.48143*(1- P₂/P₁ ^0.7407)



P₂/P₁ = Throat pressure to inlet pressure ratio (dimensionless)

= (PF PIT-2801-40 - 0.03606*Hw FIT-2801-52A)/PF PIT-2801-40

Enhanced safety for HCL synthesis units MERSEN – process control & selection of control elements

If the compositions change and are not detected and corrected in

21 HCI synthesis unit safety enhancement the meter and control algorithms, explosions can occur.

Mersen

MERSEN – process control & selection of control elements

MERSEN "partners" with AppliTek to offer their expertise with on-line analyzers Hydrogen (H₂) and Chlorine (Cl₂) analyzers

On-Line measurement of oxygen (O_2) content in chlorine (CI_2) feed – especially important for "sniff" or "weak" gas

- → Also an indication of the membrane quality / lifetime
- → Must adjust hydrogen consumption (H₂+Cl₂ → 2HCl and 2H₂+O₂→ 2H₂O) to avoid excess of chlorine OR overconsumption of hydrogen

On-Line measurement of oxygen (O_2) content in hydrogen (H_2) feed to keep the gas within the flammable limits to avoid a possible explosion

SAFE

- Measurement of other inerts in H_{2}

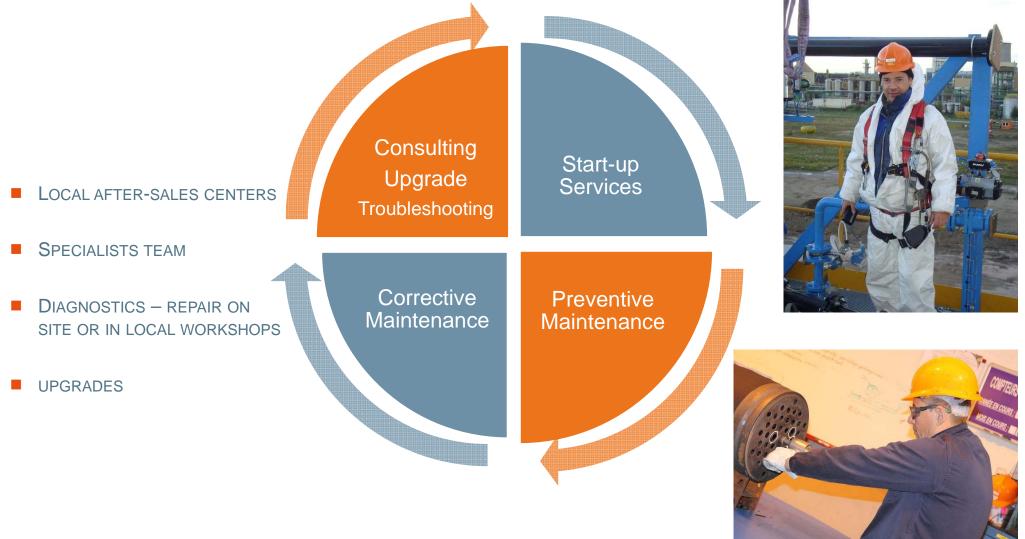
AppliTek

If the compositions change and are not detected and corrected in the meter and control algorithms, explosions can occur.

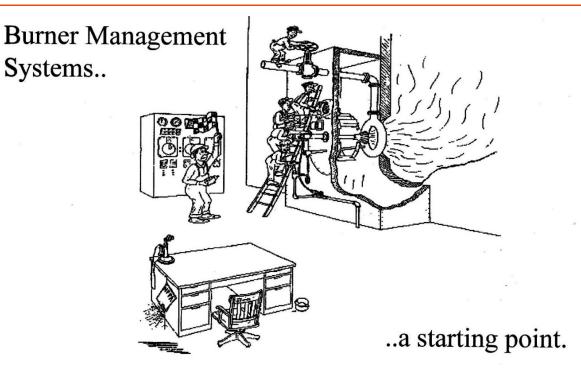
SAFETY

MERSEN – process control & selection of control elements

• If flow meters and their algorithms are not correctly engineered and calibrated, flow calculations will be in error


- Very dangerous when trying to operating with low excess H2
- An upset condition can be disastrous and lead to the crossing of the stoichiometric boundary and an explosion can occur
 - Most older installations (prior to installation in ~2005) have major meter issues and control issues that have or can lead to "incidents"
 - These need to be corrected
- Additionally, where "wet" feed gases are being used directly from the electrolytic cells, flow meter algorithms and controller algorithms need to compensate for changing saturated conditions (V%H2O in gas stream) and or changing compositions as a result of membrane ageing or process upsets
 - most important for the H2 stream
 - Since the MW (molecular weight) of H2 is so low, any change in V% of H2O in this stream will greatly affect the MW and then affect the meter reading and the H2 controller set point algorithm
 - This is also an "accident" waiting to happen

If the compositions change and are not detected and corrected in the meter and control algorithms, explosions can occur.

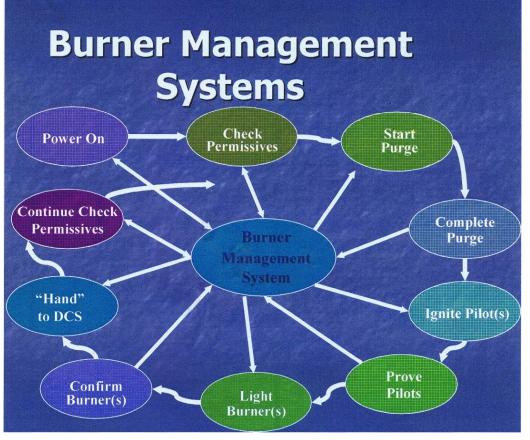

Enhanced safety for HCL synthesis units MERSEN – process control & selection of control elements

• MERSEN offers its "audit" and engineering services to find and correct these errors

Mersen

MERSEN's BMS – Burner Management System

- Before 1990, almost all HCI synthesis systems started under vacuum "manually" and "blind".....
- Most "incidents" (burner pops or explosions) historically have happened and are still happening during the "light up" (start up)
- It is about time that we move out of the "dark ages" and establish a safe & scientific start up system



Enhanced safety for HCL synthesis units MERSEN's BMS - a major safety development

Burner Management System – What does it do?

- Safely purges the system with nitrogen at start up & shut-down of burner
- Sequence burner ignition through safe start-up
- Supervise safety limits during operation
- Supervise the flame presence during operation
- Sequence a safe shutdown at end of cycle
- Integrate with the process control system for proper fuel (H2) and oxidizer (Cl2 and/or air) flows

Enhanced safety for HCL synthesis units MERSEN's BMS-integrate to the DCS

Controller (DCS) :

Set point, Start/Stop mode, programming, auto-mode, capacity increase, change process variables.

(In the Process Industry, Controller is often a $DCS = \underline{D}$ istributed \underline{C} ontrol \underline{S} ystem or a PLC= Programmable Logic Controller in a control room)

Burner Management System :

MERSEN BMS can be located at the unit or in a clean area or control room

Typically it integrates (handshakes) to the control system (DCS) via DCS programming

28 HCI synthesis unit safety enhancement

Ċ

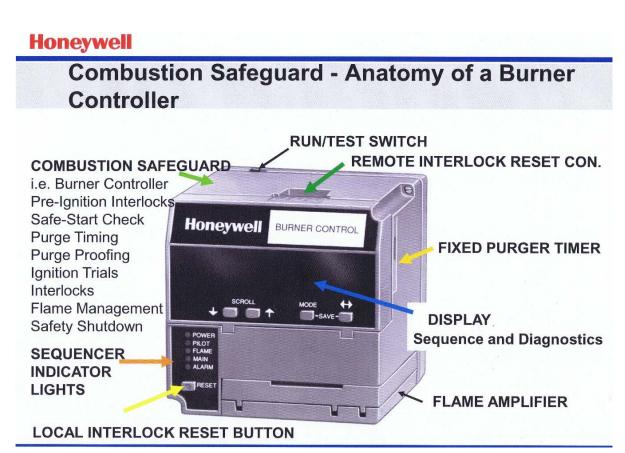
CE

apave

Enhanced safety for HCL synthesis units MERSEN'S BMS

Burner Management System – other objectives

- BMS should be separate from any other control system and must be fail safe
- NFPA86 & EN-743 have strict guidelines on what can be used as the safety devices within a BMS
 - For NFPA, flame detectors, temperature interlocks & safety shut-off valves shall be "listed" for combustion safety service or "approved" if a listed device is not available
 - "listed" means it has been tested and certified as safe for use by a Listing agency (like UL, CSA, FM, CE, etc.)
 - "approved" means device has been evaluated by the owner or an outside authority (like an insurance underwriter) and is "approved for service" but does not necessarily carry a stamp or listing
 - MERSEN takes the approach to use "listed" devices wherever possible to avoid further headaches ("approval process") for the owner



Enhanced safety for HCL synthesis units MERSEN's BMS-Combustion Safeguard

<u>Burner Management System –</u> Combustion Safeguard

- The combustion safeguard (logic solver) is the key safety "brains" for the system
- It can either be a "listed" device or a PLC (programmable logic controller) that meets additional requirements as set forth in NFPA86 section 8.4
 - MERSEN uses a "listed" Honeywell combustion safeguard microprocessor based system
 - PLC's if used need to be third party certified to IEC 61508 and have a minimum SIL2 rating
 - many other stipulations are required for PLC's or safety PLC's
 - this can put very onerous responsibilities on the owner & will be much more expensive

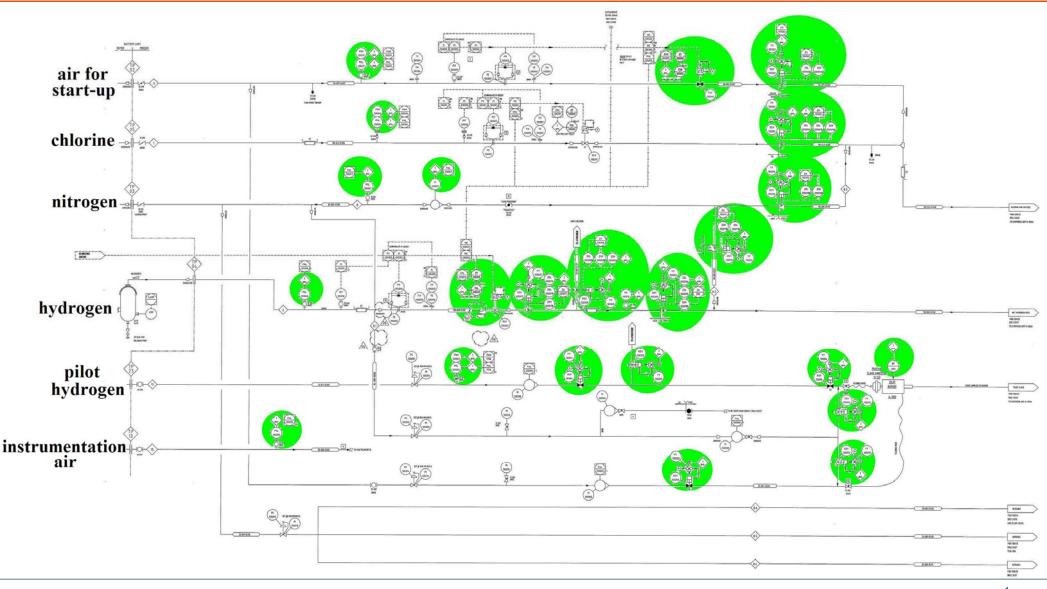
• The Honeywell system is well suited to a single burner system such as that used in a MERSEN HCI synthesis unit system's BMS package

Enhanced safety for HCL synthesis units MERSEN's BMS-Interlocks

<u>B</u>urner <u>M</u>anagement <u>System –</u> interlocks

- The combustion safeguard (logic solver) is the key safety "brains" for the system but is not the entire system
 - many other components make up the package including many safety devices and interlocks in the field that mate to the logic solver to form a fail safe package
 - includes pressure switches, flow switches, valve position limit switches, etc. which are hardwired into the BMS control panel package
 - The BMS panel design integrates all of these interlocks with the logic solver

BMS PANEL INTERIOR


BMS PANEL EXTERIOR

MERSEN's BMS- additional safety devices required for a safe system

Mersen

MERSEN's BMS- recent references in the world

- **EUROPE : (5)**
 - France : 3
 - Germany : 2

AMERICA : (15)

- Argentina : 1
- Canada : 4
- Peru : 2
- USA: 10

ASIA / OCEANA: (5)

- Indonesia : 3
- Korea : 1 ; New Zealand: 1

MIDDLE-EAST : (5)

- Kuwait : 1
- Qatar : 2
- UAE : 2

BMS packages linked with fully automatic start-up. Customized automation for each project.

SAFETY :

Exclusivity : Mersen's Burner Management System (BMS) is the only safety protection according to EN 746-42 "industrial thermoprocessing equipment / Safety requirements for combustion and fuel handling systems" and/or NFPA 86.

Mersen's BMS can be TÜV, CSA or other approval agency certified.

Enhanced safety for HCL synthesis units CONCLUSION

- SAFETY SHOULD NEVER BE AN OPTION
 - BMS is like ABS® brakes or passenger AIRBAGS® when you purchase a car !
 - A BMS protects your assets
- MERSEN IS THE ONLY ONE TO HAVE STUDIED, ENGINEERED, DEVELOPED AND SUPPLIED BMS PACKAGES FOR HCL BURNERS
- MERSEN IS THE LEADER DEDICATED TO CONTINUOUS SAFETY & OPERATIONAL IMPROVEMENT

MERSEN safety enhancements

- Material selection
- Safe equipment design
- Control philosophy and Safe practices
- Process control & selection of control elements
- BMS- Burner Management System

If you need an HCI production unit, you need to discuss the safe choices offered by

THANK YOU FOR YOUR ATTENTION

November 2016 - Buenos Aires

W. Wayne MOROZ, P.Eng. MERSEN Chemical Equipment Division Global Sales – Engineered Systems wayne.moroz@mersen.com +1 540 389 7535

34 HCl synthesis unit safety enhancement

Mersen