

SITE REVIEW & EVOLUTION

November 18th, 2016

Plant Review

- Plant Profile •
- Site Evolution ٠
- Process Safety Improvements •
- Manufacturing Technology ٠
 - Experiences & Lessons Learned

Plant Profile

- Start Up December 20th 1989
- Headcount 234
- Nominal Capacity
 - Sodium Hydroxide
 - Potassium Hydroxide
 - Sodium Hypochlorite
 - Hydrochloric Acid
 - Liquid Chlorine
 - Polychloride Aluminium 130,000 Tn/Yea
 - (*) Dry Base
- Total Power Demand

23,000 Tn/Year (*) 265,500 Tn/Year (354,000) 177,000 Tn/Year 26,600 Tn/Year 130,000 Tn/Year

27 MW

88,500 Tn/Year (*)

Plant Profile

- Up to date technology
 - 6 Electrolysers UHDENORA G4b/5b, w/ Dupont / Asahi membranes
 - Brine Process: US & Dr Müller Filters. Ion Exchange Towers
 - Dual Effect Evaporator Alfa Laval, 150 Tn/d (Plates)
 - Triple Effect Evaporator Bertrams, 240 Tn/d (Shell & Tubes)
 - 2 SGL Carbon Group HCL Synthesis Units, 200 Tn/d @ 32%
 - 2 Mersen HCL Synthesis Units, 50 Tn/d @ 32%
 - 3 Sulphuric Liquid Ring Dry Chlorine Gas Compressors, 55 Tn/d
 - Single Stage Rotary Screw Compressor Mycom for Liquid CL2 cooling
 - Water Chiller w/ Single Rotary Screw Compressor Mycom
 - ICP Perkin Elmer w/ simultaneous operation for Lab Analysis
- Steam Generation
 - 2 Boilers 8 Tn/h @ 10 BarG each w/ Dual Fuel Burner capability (NG/H2; NG/Diesel)

Plant Profile

- Storage Capacity
 - Sodium Chloride Silo 4,200 Tn
 - Potassium Chloride Silo 650 Tn
 - Sodium Hydroxide 1,100 Tn (*)
 - Potassium Hydroxide 1,100 Tn (*)
 - Sodium Hypochlorite 1,300 Tn
 - Hydrochloric Acid 850 Tn
 - Liquid Chlorine 160 Tn
 - Polychloride Aluminium 700 Tn
 - (*) Dry Base
- Raw Material
 - Sodium Chloride: 3 Local + 1 Foreign Suppliers
 - Potassium Chloride: 1 Foreign Supplier
- Logistic for finished products T&D
 - 44 Trucks & 64 Tanks

Process Safety Improvements

Manufacturing Technology – Hg to Membrane Learnings – WHY to Migrate?

- Migration to a "Clean" Manufacturing Technology
- Direct Aspects
 - Elimination of emissions and reducing wastewater discharge from mercury origin
 - People exposure to hazard materials
 - Reducing hazardous wastes generation and mud concentration to final disposal (Waste Water Treatment Plant)
 - Removing traces in finished products. Quality improvement based on the nature of the products
- Indirect Aspects
 - Transport of mercury removal
 - Reducing transport and disposal of hazardous waste
- Energy savings
 - 3.4 MWh/Tn NaOH _____ 2.3 MWh/Tn NaOH
 - Steam demand increase for NaOH concentration but less NG cost and H2 utilization as fuel
- HR Organization. Task force specially trained and exclusive is not required
- Maintenance costs reduction (Lower quantity of involved process equipment)
- Waste Water Treatment Plant operation for remediation during dismantling process in complete accordance to regulations

Manufacturing Technology – Hg to Membrane Learnings – Transition Process

• 34 Tn of High-Quality Hg recovered and sold

- 24.3 Tn from 27 Operating Cells drained
- 5.2 Tn from inventory and recovered from equipment washing (1st year)
- 4.5 Tn from dismantling and cleaning process (2nd year)

Materials and Equipment Recycling

- Copper cleaning with hydro sandblasting. Recycling and molten
- PRFV-coated carbon steel Saturator; Decanter; Brine Tanks; Sand Filters and Heat Exchangers recovered and used after deep cleaning process
- Piping, Cell's parts, Tanks and Pumps sent to disposal after in-situ cleaning process (Safety padding with stabilization and control process)
- Dismantling and demolition of facility building sent to disposal (Safety padding with stabilization and control process)
- 755 Tn of materials and pre-treated muds sent to safety padding during dismantling process (5 years)
- Continuous remediation process of the impacted phreatic area

All tasks and transition process were carried on in complete accordance to local regulations

THANK YOU !

