

Hydrogen in chlorine

CLOROSUR Technical Seminar & WCC Safety Workshop

Hotel Hilton Madero - Buenos Aires/ AR

November, 2016

Content

Introduction

- Explosion limits
- > The risks in a chlorine plant
 - Electrolyser
 - Liquefaction
 - Chlorine absorption

Conclusions

Introduction

Production of chlorine and hydrogen are coupled

• 2 NaCl + 2 H₂O \longrightarrow Cl₂ + H₂ + 2 NaOH

Unless you make use of ODC technology

- $2 \operatorname{NaCl} + \frac{1}{2} \operatorname{O}_2 + \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{Cl}_2 + 2 \operatorname{NaOH}$
- Independent from the technology used:
 - H_2 will be present in your chlorine gas
- > Hydrogen reacts easily with Cl_2 and/or O_2
 - Explosions or even detonations can occur

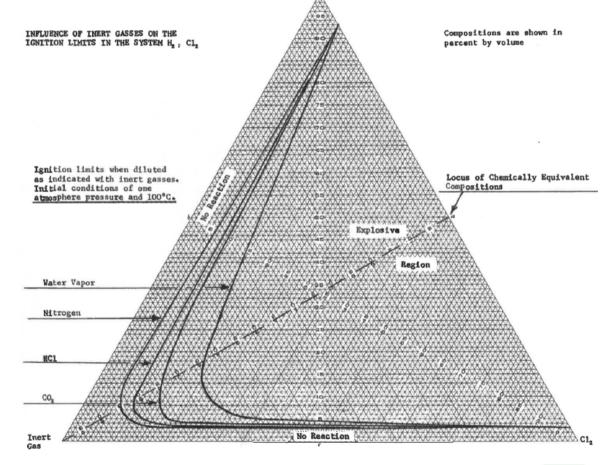
- The explosion limits are defined as an increase of 5% of the initial pressure
- Detonations occur when the reaction is so fast that a shock wave propagates;
 - this can cause extreme high pressures (up to 50 times the initial pressure)

Explosion limits and effect of temperature¹⁾

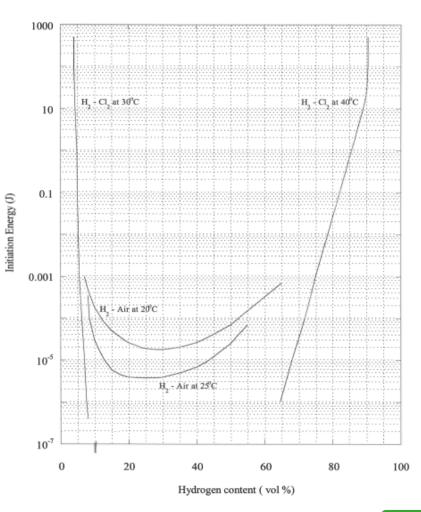
Temp. in ^o C	H ₂ – Air (vol% H ₂)	H ₂ – O ₂ (vol% H ₂)	H ₂ - Cl ₂ (vol% H ₂)
Minus 60	4.0 - 69	4.0 - 96	5.0 - 90
Minus 40	4.0 - 71	4.0 - 96	4.0 - 90.5
Minus 20	4.0 - 72	4.0 - 96	4.0 - 91.5
0	4.0 - 73	4.0 - 96	3.5 – 92
20 - 25	4.0 - 75	4.0 - 96	3.0 - 92.5
50	3.7 – 76	4.0 - 96	3.0 – 93
100	3.0 - 80	4.0 - 97	3.0 - 93

\succ The effect of pressure is limited¹⁾

■ The lower explosion limit at 13.5 bar(a) is 2.5 – 3%



¹⁾ See GEST 91/168 Chapter 9



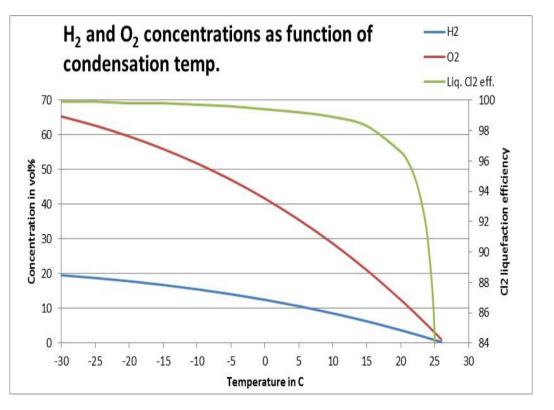
 Effects of Inert gases is limited

- H₂ Cl₂ (explosive) mixtures can easily be ignited, 10⁻⁷ J, see graph
- Auto ignition temperature of H₂ Cl₂ mixtures in 207 °C (for H₂-air it is 400 °C)

The risks in a chlorine plant **The electrolyser**

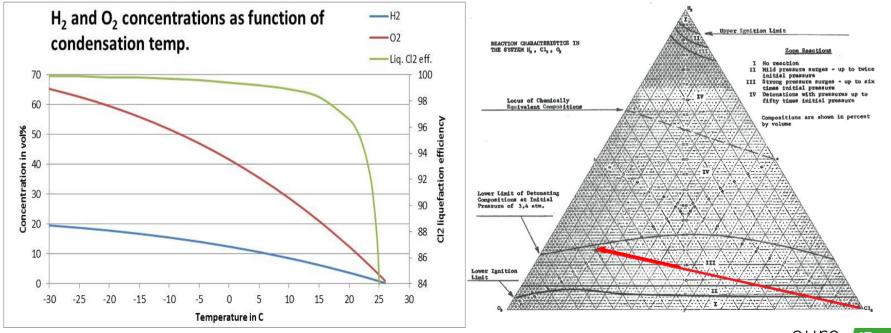
> Normal operating conditions:

- Cl₂: 97.0 99.9 vol% (dry basis)
- O₂: 0.1 2.5 vol% (dry basis)
- H₂: 0.0 0.5 vol% (dry basis)
- H_2O : 40.0 60.0 vol% (highly influenced by operating temp.)
- The water reduces the concentrations and with that the risk of having an explosive mixture
- Be aware: water concentration is decreasing dramatically during cooling and drying of the Cl₂-gas, So do not count on the dilution effect of water
- Main risk: when hydrogen levels increase above normal; e.g. membrane leakages


The risks in a chlorine plant Chlorine liquefaction (1)

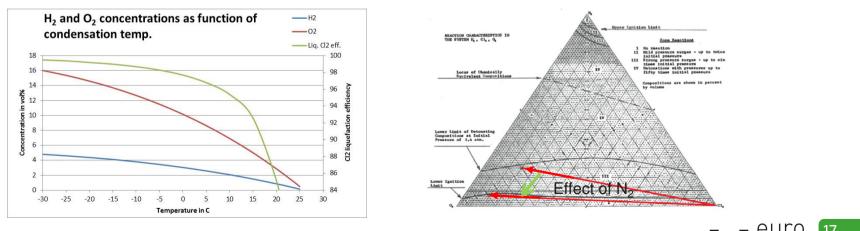
- > After cooling & drying normal operating conditions:
 - Cl₂: 97.0 99.9 vol% (dry basis)
 - O₂: 0.1 2.5 vol% (dry basis)
 - H₂: 0.0 0.5 vol% (dry basis)
- \succ What happens during the liquefaction
 - When cooling the gas the Cl₂ content will decrease and the H₂ and O₂ content will increase
 - An explosive mixture could occur

The risks in a chlorine plant Chlorine liquefaction (2)


- Assume the following conditions:
 - Cl₂: 99.35 vol%
 - O₂: 0.50 vol%
 - H₂: 0.15 vol%
 - 8 bar(abs) and 90 °C
- Condensation starts at 26,2 °C
- In the graph the H₂ and O₂ concentrations are presented as function of the condensation temperature

The risks in a chlorine plant **Chlorine liquefaction** (3)

- > At temperatures < 21 C the gas mixture is explosive
 - liquefaction efficiency 96%
- \blacktriangleright At temperatures < -40 the gas mixture is in the detonation zone



The risks in a chlorine plant Chlorine liquefaction (4)

> How to avoid the explosive mixture during liquefaction

- Stop condensation before the explosive mixture appears
 - Liquefaction efficiency only 96% 🙁
- Add e.g. N₂ during/before condensation
 - Liquefaction efficiency can be increase at the costs of lower temperatures; condensation starts at 25 °C and 99.5% eff. at -30 °C

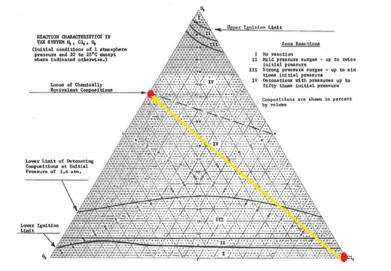
The risks in a chlorine plant Chlorine liquefaction (5)

- What happens if suddenly the H₂ level in the gas from the electrolyser increases?
- Take the previous example; and assume H₂ in cell gas increases from 0.15% to 0.3%
- Condensation at approx. -25 °C

H ₂ content in cell gas	0.15 %	0.30 %
H ₂ content after condensation	4.61%	8.73%

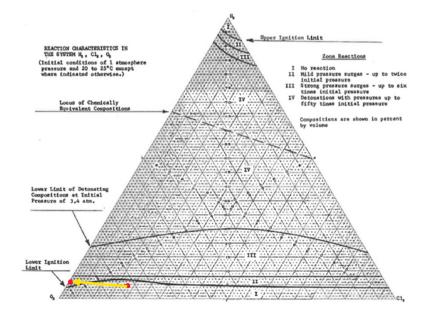
> What to do?

- Increase temperature to + 6.5 °C
- Increase nitrogen flow to condenser


The risks in a chlorine plant Chlorine absorption (1)

- In the Cl₂ absorption all kind of gasses containing Cl₂ are treated.
- \geq These gases will also contain H₂
- In the absorption the Cl₂ will react but the H₂ and O₂ remains
- Two cases will be reviewed
 - An electrolyser produces gas with High H₂ (e.g. 1% instead of 0.15%)
 - Normal absorption of the vent gas form the condensation

The risks in a chlorine plant Chlorine absorption (2)


- An electrolyser produces gas with High H₂ (e.g. 1.0% instead of 0.15%)
- Due to abnormal situation and risks in liquefaction it will be rerouted directly to absorption
- > What happens:
 - In absorption mixture becomes detonative
- What to do?
 - Add always sufficient Air to absorption

The risks in a chlorine plant Chlorine absorption (3)

- > Normal absorption of the vent gas from the condensation
- Composition:
 - after condensation: CI_2 18.5%; O_2/N_2 76.9%; H_2 4.6%
- > What happens:
 - In absorption mixture becomes explosive
- What to do?
 - Add always sufficient Air to absorption

Conclusions

- > The Cl₂ will always contain a small amount of H₂
- > Dangers situations can occur every ware in the process
- It is advised to measure hydrogen:
 - > After the electrolysers
 - After the condensation or in between the different condensation steps
- Have sufficient control in the condensation when H₂ levels increase
 - > Adding N_2 or (dry) Air
 - Increase condensation temperature
- Add always sufficient amounts of fresh air to the absorption to avoid explosive/detonative mixtures

Thank you very much

0

Ton Manders

