Case study: Risks of Cathodic Pressurization in diaphragm cells operating with synthetic diaphragm

UNIP/R

UNIPAR Carbocloro Indupa

Where are we?

Chlorine Production in Latin America Brasil

SUNIPAR

Argentina

PVC Production in South America

Sites:

Cubatão (SP/BR) Started in 1964 Caustic, Liquid Chlorine and Derivatives Mercury / Diaphragm / Membrane

Santo André (SP/BR) Started in 1941 Caustic and PVC Membrane

Bahía Blanca (BA/AR) Started in 1981 Caustic and PVC Mercury / Membrane

Plant Capacity (metric ton/year)	A state of the second	the second			
	CUBATÃO Brazil	SANTO ANDRÉ Brazil	BAHÍA BLANCA Argentina	TOTAL	
Chlorine	355,000	160,000	165,000	680,000	
Caustic soda	400,000	180,000	185,000	765,000	
Hydrochloric Acid 33%	630,000	115,000	145,000	890,000	
Soda Bleach	400,000	2. Hall P 1 S		400,000	
EDC	140,000	500,000	400,000	1.040,000	
Μνς		300,000	240,000	540,000	
PVC		280,000	240,000	520,000	

Integrated Management System

We have already received more than 1144.500 VISITORS

ZERO ACCIDENTS

WITH VISITORS

Risks of Cathodic Pressurization in cells with synthetic diaphragm - PMX

Diaphragm cell condition in normal operation

Difference between modified asbestos diaphragm and PMX

Modified asbestos diaphragm:

- The deposition is done directly on the cathodic screen;
- Asbestos fibers cover the entire surface of the cathode;
- Can withstand small intensity pressure inversions between the cathodic side and anodic side for a short period of time.

PMX Diaphragm:

- To make the deposition a nylon screen is installed on the cathode screen;
- The PMX fibers are attached to the nylon screen by not adhering to the cathode screen;
- In case of pressure inversions between the cathodic side and the anodic side, even for a short period of time and small intensity, all the resistance stays at the edge of the cathode (looks like a gas balloon);
- Due to that it has the risk of blistering or tearing the diaphragm.

Difference between modified asbestos diaphragm and PMX

A nylon screen is installed on the cathode screen

Blistering can occur where the diaphragm is not supported by the anodes

Tearing the diaphragm at the edge of the cathode

Difference between modified asbestos

Possible reasons of pressure inversion between cathodic and anodic sides

During cell startup:

- Not draining the internal liquor sufficiently of the cathode;
- Failure during hydrogen hose installation.

During normal operation - excessive vacuum in the chlorine system:

- Excessive water flow to the chlorine seal;
- Failure to drain the sealing water from the chlorine seal.

Normal diaphragm cell startup

Diaphragm cell condition during a long stop:

When the cells are out of operation, a plug is installed in the liquor outlet.

Due to that it is possible to ensure that the entire cathodic area is kept full of brine, preventing corrosion of the cathodic screen.

Normal diaphragm cell startup

In the startup preparation, the plug is withdrawn and the height of the liquor outlet pipe is reduced, creating different liquid levels in the anode and cathodic sides.

Thus to that the pressure within the cathode region is slightly lower than the pressure of the anodic region.

As the entire diaphragm is sealed with brine the hydrogen will be directed to the specific outlet as soon as the cell is energized.

<u>Failure during cell startup:</u> Not draining the internal liquor sufficiently of the cathode

If the cell is switched on before sufficient amount of brine is drained from the cathode side, there will be a pressurization due to the sealing of the hydrogen outlet.

Fail during cell startup: Failure during hydrogen hose installation

When the hydrogen hose is installed there may be a restriction that will block the gas outflow.

This will cause an pressure increase on the cathode side.

Chlorine seal – Controls the maximum or minimum pressure in chlorine header

Chlorine seal – Controls the maximum or minimum pressure in chlorine header

High pressure in chlorine header

Chlorine seal – Controls the maximum or minimum pressure in chlorine header

Excessive vacuum in the chlorine system: Failure to drain the sealing water from the chlorine seal

Airton Andrade

airtonandrade@uniparcarbocloro.com.br

