Hydrogen safety in chlor-alkali

Ton Manders Euro Chlor

Content

- Introduction
- Explosion limits
 - The risks in a chlorine plant
 - Electrolysers
 - Chlorine cooling & liquefaction
 - Chlorine absorption
 - Catholyte circulation, caustic evaporation, caustic storage
 - Hydrogen cooling
 - HCl production & Acid tanks
- Conclusions

Introduction

- Production of chlorine and hydrogen are coupled
 - $2NaCl + 2H_2O \longrightarrow Cl_2 + H_2 + 2NaOH$
- Unless you use the ODC process – $2NaCl + H_2O + \frac{1}{2}O_2 \longrightarrow Cl_2 + 2NaOH$
- H₂ can be more or less in every part of the chlor-alkali installation
- The electrolyser is not the only source of the H₂

Introduction

- Other H₂ sources in the chlor-alkali installation
 - Acid (e.g. HCl, H_2SO_4) in contact with metals generates H_2

$$H_{2}SO_{4 (aq)} + Fe_{(s)} \longrightarrow H_{2(g)} + Fe^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)}$$

2HCl_(aq) + Fe_(s) \longrightarrow H_{2(g)} + Fe^{2+}_{(aq)} + 2Cl^{-}_{(aq)}

oroSur

Video: Aluminum foil + HCl solution

- Melting FeCl₃.xaq can create and acid environment and the acid can react with the metal and form H₂

FeCl₃ + $3H_2O$ 2HCl + Fe Fe(OH)₃ + 3HCl (0.1 M solution pH = 2) FeCl₂ + H_2

Explosion limits

- Explosion limits and the effect of temperature¹⁾
 - The effect of pressure is limited¹⁾ for chlorine the lower explosion limit become 2.5 3 vol% at 13.5 bar(a)

Temperature in °C	H ₂ – Air (vol% H ₂)	$H_2 - O_2$ (vol% H_2)	$H_2 - Cl_2$ (vol% H_2)
Minus 60	4.0 - 69	4.0 - 96	5.0 - 90.0
Minus 40	4.0 - 71	4.0 - 96	4.0 - 90.5
Minus 20	4.0 - 72	4.0 - 96	4.0 - 91.5
0	4.0 - 73	4.0 - 96	3.5 - 92.0
20 – 25	4.0 - 75	4.0 - 96	3.0 - 92.5
50	3.7 - 76	4.0 - 96	3.0 - 93.0
100	3.0 - 80	4.0 - 97	3.0 - 93.0

- Ignition energy is very low 10⁻⁷ J
- Auto ignition temperature H₂ Cl₂ mixtures is 207 °C (for H₂-air it is 400 °C)

Explosion limits in the system Cl_2 - H_2 - O_2

- Explosion limits
 - No reaction
 - Mild explosion 2 times initial pressure
 - Strong explosion 6 times initial pressure
 - Detonations 50 times initial pressure

Explosion limits

• Effects of Inert gases is limited

Electrolysers

- Normal operating conditions:
 - Cl₂: 97.0 99.9 vol% (dry basis)
 - O₂: 0.1 2.5 vol% (dry basis)
 - H₂: 0.0 0.5 vol% (dry basis)
 - H_2O : 40.0 60.0 vol% (highly influenced by operating temp.)
- Water reduces the concentrations and consequently, the risk of having an explosive mixture
- <u>Caution</u>: water concentration decreases dramatically during cooling and drying of the Cl2-gas, So do not count on the dilution effect of water
- <u>Main risk</u>: when hydrogen levels increase above normal; e.g. membrane leakages

Electrolysers

Preventive measures

- Purge with nitrogen when taking electrolyzers out of operation
- Measure hydrogen in chlorine gas (early detection/early warning)
- Have a cell voltage monitoring system (early detection/waring for leaking membranes
- Be aware that condensate from hydrogen system is saturated with hydrogen, have sufficient dilution air or purge collection systems continuously with nitrogen
- The cell room has normally not an explosion proof (ATEX) design; but take care that hydrogen cannot accumulate in the top of the roof

- During the cooling and drying the water will be removed but the hydrogen concentration (on dry basis) doesn't change. Normal operating conditions:
 - Cl₂: 97.0 99.9 vol% (dry basis)
 - O₂: 0.1 2.5 vol% (dry basis)
 - H₂: 0.0 0.5 vol% (dry basis)
- <u>Main risk</u>: when hydrogen levels increase above normal; e.g. membrane leakages the risk of an explosive mixture increase
- During the chlorine liquefaction the H₂ and O₂ concentration starts to increase; With an increasing risk of getting an explosive mixture.
 - Especially when hydrogen concentration increases in gas from electrolyzers e.g. due to membrane damages

- Assume the following conditions:
 - Cl₂: 99.35 vol%
 - O₂: 0.50 vol%
 - H₂: 0.15 vol%
 - 8 bar(abs) and 90 °C
- Condensation starts at 25.8 °C
 - In the graph, H₂ concentration is presented as a function of the condensation temperature

- At temperatures < 21 °C the gas mixture is explosive
 - Liquefaction efficiency 96%
- At temperatures < -40 °C the gas mixture is in the detonation zone

Chlorine cooling and liquefaction

Preventive/control measures

- Measure hydrogen in chlorine gas at electrolysers (early detection/early warning)
- Have a cell voltage monitoring system (early detection/waring for leaking membranes)
- Measure H₂ concentration after each condensation step and use this to control temperature of the condensation and/or nitrogen intake

Safe guards:

- Have a safety function at high H₂ concentration:
 - Stop production and purge with N₂
- Make condensation system explosion proof

- What happens if (suddenly) the H₂ level in the gas from the electrolyser increases?
- Take the previous example; assume H₂ in cell gas increases from 0.15% to 0.3%

	99.35 vol%			Cl ₂ :	99.20 vol%	
	0.50 vol%			• O ₂ :	0.50 vol%	
_	0.15 vol%			H ₂ :	0.30 vol%	
	os) & condensation at 21 °C	2		► 8 bar(a	bs) & condensation at 2	21 °C
concentration after condenser 2.9 vol%		H ₂ cond	H ₂ concentration after condenser 4.81 vol%			
	99.20 vol%	ocre	ase condens			Add .5vol% N2/dry-air
	0.50 vol%				99.20 vol%	
	0.50 vol%			O ₂ :	99.20 vol% 0.50 vol%	
	0.50 vol% 0.30 vol%			O ₂ : H ₂ :	99.20 vol% 0.50 vol% 0.30 vol%	
(at	0.50 vol% 0.30 vol%)s) & condensation at 23 °C			O ₂ : H ₂ : 8 bar(a	99.20 vol% 0.50 vol% 0.30 vol% bs) & condensation at	21 °C
r(at	0.50 vol% 0.30 vol% os) & condensation at 23 °C entration after condenser 2	2.94 vol%		O_2 : H_2 : 8 bar(a H_2 cone	99.20 vol% 0.50 vol% 0.30 vol% bs) & condensation at centration after conde	21 °C nser 2.96 vol%

Chlorine cooling and liquefaction

- Why does the decrease of electrolyser load not help?
- The upset is probably caused by an increase in "pinholes" in membranes
- Increased holes means increased flow of hydrogen to chlorine
- Lower production doesn't decrease the H₂ through the membrane, it only decreases the chlorine production and (slightly) the H₂ production of the leakage current
 - Effect = H_2 concentration in chlorine increases even further

-Wrong measure

Chlorine absorption

- In Cl₂ absorption all kind of gasses containing Cl₂ are treated
- These gases will also contain H₂
- In the absorption, Cl₂ will react but H₂ and O₂ remain
- Risk of getting explosive mixtures
- Measure:
 - Always ensure sufficient air or nitrogen flow to absorption to ensure under all conditions sufficient low H₂ concentrations

Catholyte circulation, caustic evaporation, caustic storage

- The caustic from the electrolysers is saturated with H₂
- The caustic circulation tank normally connected with H₂ system,
 - So only gas bubbles will be released, caustic will remain saturated
- If caustic is further concentrated in an evaporation the hydrogen will escape together with the water vapor
 - Check if the vent system/vacuum system of the caustic evaporation can contain explosive mixtures
- For the storage (mainly for caustic from electrolysers) ensure that hydrogen cannot accumulate in the top of storge tanks
 - E.g. have a small N₂ purge on the storage tanks

Hydrogen cooling

- The hydrogen cell gas will normally be cooled
 - The condensate will be saturated with H₂
 - Be aware: spaces above open drains and trenches might be flammable
 - Important awareness for work activities around these area's as the environment may eb explosive
- Hydrogen vent stack
 - Ensure that there is no possibility for ingress of air into the hydrogen system
 - e.g. a continuous positive flow of N₂ and/or a water seal

HCl production and Acid tanks

- In the HCl production (from $Cl_2 + H_2$) normally and excess H_2 is used.
 - Ensure the vent gas outlet is at a safe place
 - The vent gas stream can be flammable and/or explosive
 - The produced HCl solution is saturated with H₂
 - Ensure adequate venting and blanketing practices
- Hydrochloric acid storage tanks
 - H₂ can come from the saturated HCl solution form the HCl production
 - H₂ generation due damaged protective layer (of metal tanks)
 - Ensure adequate venting and blanketing practices

Conclusions

- \succ Cl₂ will always contain a small amount of H₂
- Dangerous situations can occur everywhere in the process
- It is advised to measure hydrogen:
 - After the electrolysers
 - After the condensation or in between the different condensation steps
- Have sufficient control in the condensation when H₂ levels increase
 - Adding N₂ or (dry) Air
 - Increase condensation temperature
- Always add sufficient amounts of fresh air to the absorption to avoid explosive/detonative mixtures

Conclusions

- \succ H₂ can not only cause problems in the chlorine system
- Be aware of hydrogen releases and thus potential risks of fire/explosions in
 - Hydrogen condensate system
 - Caustic evaporation
 - Caustic storage
 - Hydrochloric acid production
 - Acid storage tanks

➢ Install sufficient measure to avoid accumulation of H₂

Thank You Ton Manders (tma@cefic.be)

