

Agenda

- 1. HCl synthesis
- 2. Heat recovery with hydrogen chloride (HCI) synthesis
 - Membrane wall technology
 - New ECOSYN® technology
- 3. New central spin burner
- 4. Hydrogen utilization
- 5. Summary

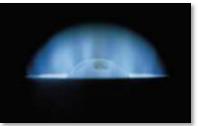
HCI Synthesis Heat needs to be removed

Typical applications - HCl is used in: Semiconductor, pulp & paper, silicone, fracking, EHC, chlor alkali industry

Hydrogen + Chlorine = Hydrogen Chloride (gaseous) + Heat

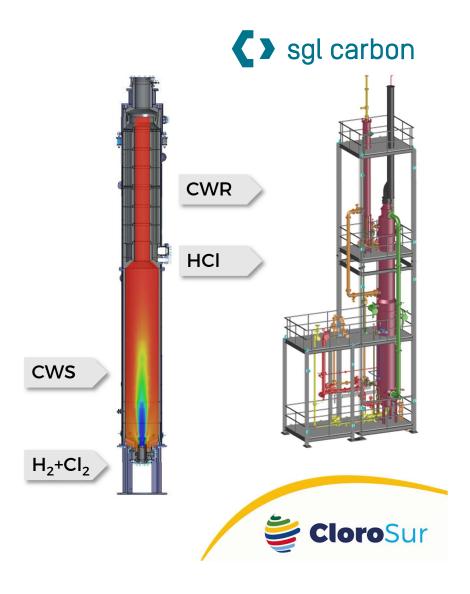
- Reaction enthalpy: 0.7 kWh/kg
- Hydrogen excess: 5 to 15%

Hydrogen + Oxygen = Water (gaseous) + Heat


Reaction enthalpy: 3.7 kWh/kg

HCl absorption = Hydrochloric Acid (liquid) + Heat

Absorption enthalpy: 0.5 kWh/kg



SGL's standard HCL synthesis Performance data

Parameter	Unit	
Capacity (100% HCI)	TPD	0 - 160
HCl acid concentration	wt.%	37
HCl gas concentration	vol%	95
HCl gas pressure	barg	3,2
Cl2 content in acid	ppm wt.	< 1
HCl content in vent gas	mg/Nm³	< 30
CL2 content in vent gas	mg/Nm³	< 3

CWS: Cooling water supply; CWR: Cooling water return

Options to gain efficiency Heat recovery

	Standard	Hot water loop	Membrane wall	ECOSYN
Steam production	-	-	0,6 t/t HCl	0,9 t/t HCl
Hot water production	-	400 kWh/t HCl	-	-
Cooling water duty (1)	1200 kWh/t HCl	800 kWh/t HCl	800 kWh/t HCl	550 kWh/t HCl
Setup				patented technology, industry benchmark in efficiency

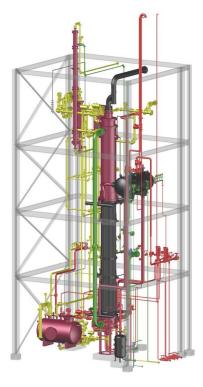
(1) Cooling water duty can be further reduced by using the heat of absorption for e.g. boiler feed water pre-heating

Membrane wall technology Performance data and requirements

Key performance data	Unit	
Capacity (100% HCI)	TPD	0 - 150
Steam production	t/t HCI	0,6
Steam pressure	barg	up to 10
Fe content	ppm wt.	< 3

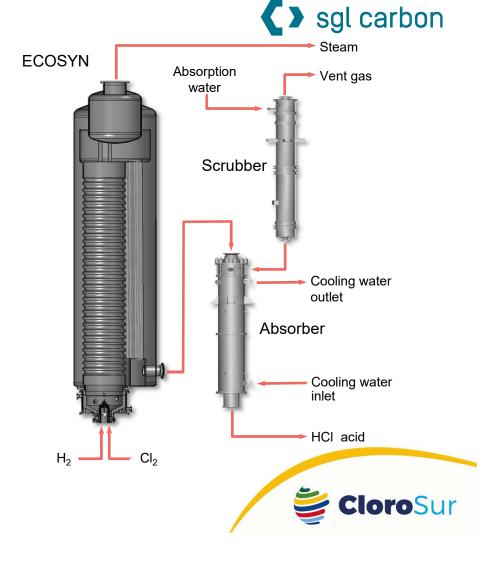
Requirements

- Feed must be free of salt
- Steel combustion chamber must not cool down below the dew point for corrosion protection
- Boiler feed water according specification EN12952-12



Membrane wall technology Customer benefits

- No pumps
 - Thermosiphon principle for boiler water circulation
 - Elevated acid outlet
- High steam pressure
 - Up to 10 barg due to the use of a steel furnace
- High reliability
 - Design is based on proven membrane wall technology
- Highest safety level
 - Same safety system used as per standard concept
- Good accessibility
 - Designed as standard bottom burner concept
- References
 - China, Canada, France, Italy, Korea, Malaysia, Romania



ECOSYN technology Performance data and requirements

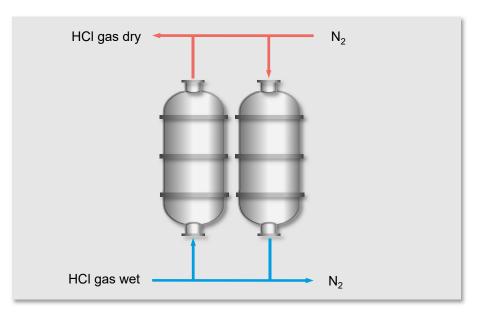
Key performance data	Unit	
Capacity (100% HCI)	TPD	90
Steam production	t/t HCI	0,9
Steam pressure	barg	up to 14
Fe content	ppm wt.	< 1,5

Requirements

- Feed must be free of salt
- Steel combustion chamber must not cool down below the dew point for corrosion protection
- Boiler feed water according specification EN12953-10

ECOSYN technology Customer benefits

- Highest efficiency
 - 0,9 t steam/t HCl
- High steam pressure
 - Up to 14 barg
- High reliability
 - Design is based on shell boiler technology
- No boiler water pumps
 - Thermosiphon principle for boiler water circulation
- Good accessibility
 - Designed as standard bottom burner concept
- References
 - Austria, Italy


Product quality boostingReduction of contaminations to the absolute limits

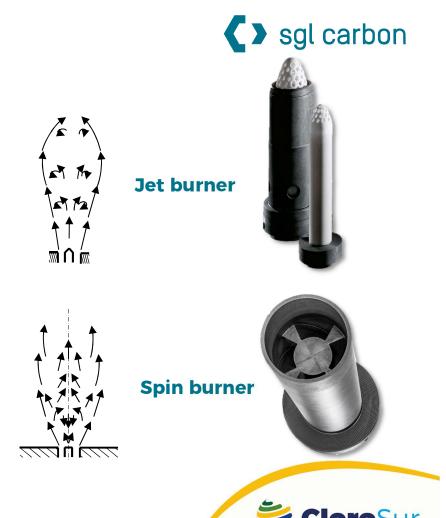
Reduction of:

Fe, Cl₂, water, H₂

Available technologies and systems

- Adsorption units
- Molecular sieve drying
- H₂SO₄ drying
- Synthesis desorption systems
- Stripping

Example adsorption

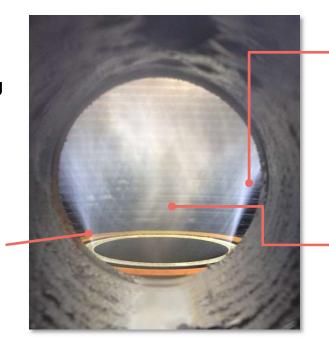

Innovation in burner technology Motivation and solution

Motivation

Development of burner completely made by SGL

Requirements and basic assumptions

- Effective mixing of H₂ and Cl₂ for complete combustion
- Premixing danger of flashback in mixing chamber and sensitive to salt and water contents
- Mixing in combustion chamber prevents flashback
- Graphite material must not be exposed to flame
- Mixing can be improved by swirling flows


Development of a swirling flow graphite burner

Central spin burner Proven performance in operation

- Strongly turbulent
- Recirculating flow
- Prevention of backburning

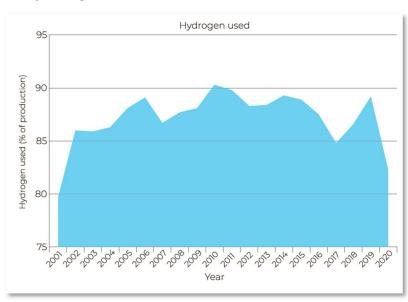
Stable conditions shown by sharp flow lines

Excellent conversion shown by white flame color

Excellent gas mixing shown by swirl in the center

Central spin burner Customer benefits

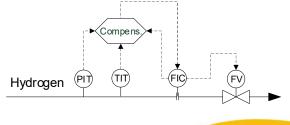
- Long lifetime
 - Robust design with no parts exposed to flame
- Improvement of performance
 - Reduction of free Cl2 in the product
 - or reduction of H2 excess
 - Better conversion rate of weak gases
 - Shortest delivery time SGL production
- Compatibility with SGL's superior key components
 - Pilot burner
 - Burner flushing system
 - Flame guard system
- Retrofit option
 - Fits to most existing units



Hydrogen utilization

Chlor-alkali industry review 2020-2021

 Ambition for 2030 is to use 100% of the hydrogen



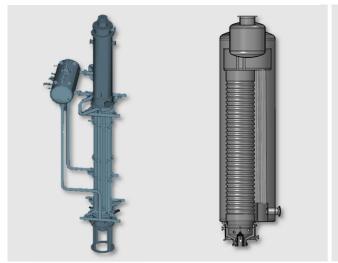
Source: Chlor-alkali industry review 2020-2021 page 16

SGL solutions to support this ambition

- New central spin burner
 - Up to 50% reduced hydrogen excess
- State of the art control
- Density compensated flow measurement
- H₂ recycle
 - Conceptual phase
- H₂ after combustion with steam generation
 - Conceptual phase

SGL's offer to our customers Your benefit

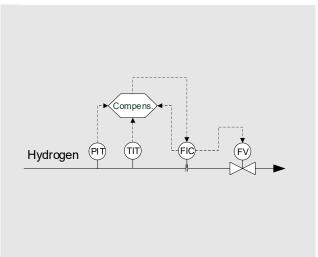
Industry benchmark in



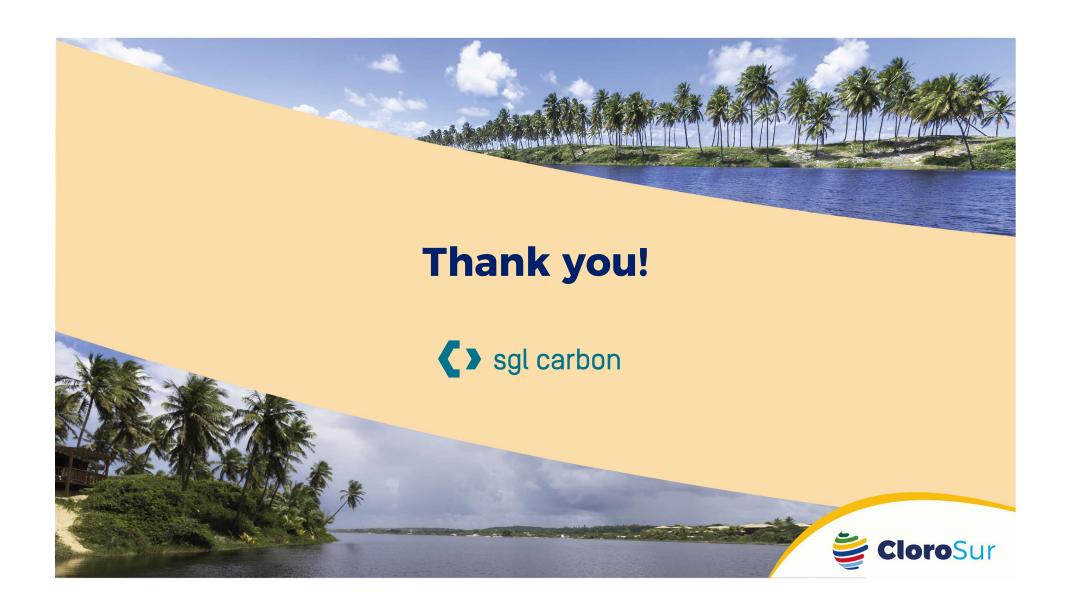
Summary - Designed for sustainable benefits

Your benefit: Reduced CO₂ emissions - Reduced OPEX - Less dependence from energy prices

Heat recovery


Membrane wall - 0,6 t steam/t HCl ECOSYN - 0,9 t steam/t HCl

Central spin burner



Up to 50% reduced H₂ excess

Hydrogen utilization

